Testing Waters
  • Scrapbook
  • Projects
    • Bamiyan Cultural Center
    • Bauhaus Museum
    • Better Hebbal
    • Bicycle Station
    • Cross Laminated Timber
    • Facade
    • Flowing Fabrication
    • Form from Images
    • Guggenheim Helsinki
    • National War Museum
    • National War Memorial
    • Indflorescence
    • Rectangular Compartments
    • Retail Space Layout
    • Noise Barrier : Swedevia Airport
    • Walden
    • Wilson Garden
  • Patterns
    • Area Graph
    • Array along Curve
    • Fibbonacci and Factorial
    • Gyroid
    • Hexagonal Pattern From Image
    • Hexagonal Grid
    • Koch Star
    • Mandelbrot Set
    • Pattern
    • Pattern
    • Pattern
    • Phyllotaxis
    • Random Strip Widths
    • Skewed Surface
    • Staggered Checkerboard
    • Triangle subdivision
    • Vector Field
    • Voronoi
    • Waves
    • Weave
  • Geometry
    • Boundary Curve
    • Bridging parallel curves
    • British Museum Great Court
    • Catenary
    • Delete Adjacent
    • Geodesic Sphere
    • Group Branching Curves
    • Group Circles
    • Group curves
    • K Mean
    • Nurbs Surface Irregular
    • Overlapping Petals
    • Pair Nearest
    • Parametric Shapes
    • Platonic Solids
    • Polyline to PolyArc
    • Roman Surface
    • Sagrada Familia Schools Roof
    • Sine Curve
    • Sine Ribbon
    • Spherical Transformations
    • Split Rectangle
    • Tangential Circle through Point
    • Travelling Salesman Problem
    • Unaligned Bounding Box
  • Lists
    • Alter by Boolean Sequence
    • Color by distance
    • Consecutive Points
    • Distancing
    • Divide Equally
    • Geometry from Image
    • Image based Point Density
    • Isovists
    • Reduce Color Palette
    • Replace Consecutive
    • Replace Multiple
    • Replace Recurring
    • Shadow Area
    • Shortest Path
    • Solar Analysis
    • Topography Analysis
  • Motion
    • Adjacency
    • Animate Sphere
    • Cellular Automation
    • Cloth
    • Hypotrochoid
    • Manakin
    • Rolling Spiral
    • Tan Curve
    • Trammel of Archemedes
    • Image to Integer
  • Articles
    • A Conceptual Approach to Integrating Computational Methods in Early Stage Design
    • Design Script's ambiguous and versatile Replication Guides <1>
    • Design Script's ambiguous and versatile Replication Guides <2>
Powered by GitBook
On this page
  1. Patterns

Koch Star

Pattern based on Koch curve

PreviousHexagonal GridNextMandelbrot Set

Last updated 3 years ago

def k1 (p:var[]..[])
{
	v1 = Vector.ByTwoPoints(p[0],p[1]).Normalized();
	d1 = p[0].DistanceTo(p[1]);
	p1 = p[0].Translate(v1,d1/3);
	v2 = v1.Rotate(Vector.ZAxis(),60);
	p2 = p1.Translate(v2,d1/3);
	p3 = p1.Translate(v1,d1/3);
	return [p[0],p1,p2,p3,p[1]];
};

With Loops


def k2 (pts:var[]..[])
{
	p1 = List.DropItems(List.Sublists(pts,0..1,1),-1);
	p2 = k1(p1<1>);
	p3 = Point.PruneDuplicates(List.Flatten(p2,-1),0.1);
	return List.AddItemToEnd(p3[0],p3);
};

def k3 (pt:var[]..[],it:int)
{
	a = [Imperative]
	{
		c = 0;
		b = [];
		while (c < it)
		{
			b = k2(pt);
			pt = b;
			c = c + 1;
		}
		return b;
	}
	return a;
};

With Recursion


def k2(pts:var[]..[],n:int[]..[])
{
	a = [Imperative]
	{
		if (List.Count(pts)>=Math.Pow(5,n))
			return pts;
		else
		{
			b = [Associative]
			{
				p1 = List.DropItems(List.Sublists(pts,0..1,1),-1);
				p2 = k1(p1<1>);
				p3 = List.Flatten(p2,-1);
				return p3;
			}
			return Point.PruneDuplicates(k2(b,n),0.1);
		}
	}
	b = List.Clean(List.Flatten(a,-1),false);
	return List.AddItemToEnd(List.FirstItem(b),b);
};

Visualization with T-Splines

// T Spline Visualization
p001 = List.Transpose(Circle.ByCenterPointRadius(Point.Origin(),
[50,35,25,5])<1>.PointAtParameter((1..0..#4)<2>));
p002 = k2(p001<1>,2).Translate(Vector.ZAxis(),[0,10,15,60]);
pc01 = PolyCurve.ByPoints(List.Transpose(p002));
pc02 = PolyCurve.ByPoints(pc01.PointAtParameter((0..1..#10)<1>));
ts01 = TSplineSurface.BuildPipes(List.Flatten(pc01.Explode(),-1),
1.5,0.1,3,true,false,0,0,1,0.3,1,1,true);
ts02 = TSplineSurface.BuildPipes(pc02.Explode(),2..0.2..#10,
2..0.2..#10,3,true,false,0,0,1,0.3,1,1,true);
ts03 = TSplineSurface.ByCombinedTSplineSurfaces
(List.Flatten([ts01,ts02],-1)).Translate(150,0,0);

98MB
koch.stl
STL file
T-Spine visualization of Koch curve structure