Testing Waters
  • Scrapbook
  • Projects
    • Bamiyan Cultural Center
    • Bauhaus Museum
    • Better Hebbal
    • Bicycle Station
    • Cross Laminated Timber
    • Facade
    • Flowing Fabrication
    • Form from Images
    • Guggenheim Helsinki
    • National War Museum
    • National War Memorial
    • Indflorescence
    • Rectangular Compartments
    • Retail Space Layout
    • Noise Barrier : Swedevia Airport
    • Walden
    • Wilson Garden
  • Patterns
    • Area Graph
    • Array along Curve
    • Fibbonacci and Factorial
    • Gyroid
    • Hexagonal Pattern From Image
    • Hexagonal Grid
    • Koch Star
    • Mandelbrot Set
    • Pattern
    • Pattern
    • Pattern
    • Phyllotaxis
    • Random Strip Widths
    • Skewed Surface
    • Staggered Checkerboard
    • Triangle subdivision
    • Vector Field
    • Voronoi
    • Waves
    • Weave
  • Geometry
    • Boundary Curve
    • Bridging parallel curves
    • British Museum Great Court
    • Catenary
    • Delete Adjacent
    • Geodesic Sphere
    • Group Branching Curves
    • Group Circles
    • Group curves
    • K Mean
    • Nurbs Surface Irregular
    • Overlapping Petals
    • Pair Nearest
    • Parametric Shapes
    • Platonic Solids
    • Polyline to PolyArc
    • Roman Surface
    • Sagrada Familia Schools Roof
    • Sine Curve
    • Sine Ribbon
    • Spherical Transformations
    • Split Rectangle
    • Tangential Circle through Point
    • Travelling Salesman Problem
    • Unaligned Bounding Box
  • Lists
    • Alter by Boolean Sequence
    • Color by distance
    • Consecutive Points
    • Distancing
    • Divide Equally
    • Geometry from Image
    • Image based Point Density
    • Isovists
    • Reduce Color Palette
    • Replace Consecutive
    • Replace Multiple
    • Replace Recurring
    • Shadow Area
    • Shortest Path
    • Solar Analysis
    • Topography Analysis
  • Motion
    • Adjacency
    • Animate Sphere
    • Cellular Automation
    • Cloth
    • Hypotrochoid
    • Manakin
    • Rolling Spiral
    • Tan Curve
    • Trammel of Archemedes
    • Image to Integer
  • Articles
    • A Conceptual Approach to Integrating Computational Methods in Early Stage Design
    • Design Script's ambiguous and versatile Replication Guides <1>
    • Design Script's ambiguous and versatile Replication Guides <2>
Powered by GitBook
On this page
  1. Geometry

Sagrada Familia Schools Roof

Begin with a basic sine wave and incrementally alter lists of points to alter positions and profiles utilizing replication guides in Design Script (ver. 3.1)

PreviousRoman SurfaceNextSine Curve

Last updated 1 year ago

p = Point.ByCoordinates (Math.DegreesToRadians((0..(180*8)..10)),(-10..10..#9)<1>,(Math.Sin((-90..(180*8)..10)+(0..90..10)<1>)*(-1.25..1.25..#10))<1>);
GeometryColor.ByGeometryColor(NurbsSurface.ByPoints(Point.ByCoordinates (p.X,(p.Z<-0.6 ? p.Y+(-p.Y*(p.Z)*0.08) : p.Y),p.Z)).Thicken(0.25).Translate(0,0,1.5),Color.ByARGB(255,255,250,200));

While the code required to create this geometry can be packed into a couple of lines of Design, below is a stepwise elaboration of the process.

// Sine Wave
r = 0..360;
x = Math.DegreesToRadians(r);
y = 0;
z = Math.Sin(r);
p = Point.ByCoordinates (x,y,z);
// Decrease point count
r = 0..360..10;

// Increase Frequency
r = (0..360..10) * 4;

// Increase Amplitude
z = Math.Sin(r) * 1.5;
// A range of values along the Y-axis
y = -10..10..#9;

// Repeat waves along the Y-axis
p = Point.ByCoordinates (x,y<1>,z);
// Nurbs Surface
s = NurbsSurface.ByPoints(p);
// Increase Z incrementally
z = Math.Sin(r +(0..90..#9)<1>) * 1.5;

// Apply to wave profiles
p = Point.ByCoordinates (x,y<1>,z<1>);
// Incrementally minimizing amplitude of waves towards the middle
a = List.Flatten([1.5..0..#4,0,0..1.5..#4],-1);
z = Math.Sin(r +(0..90..#9)<1>) * a;
// Trough Protrusion
tp = p.Z < -1.4 ? p.Y+(-p.Y*(p.Z)*0.1) : p.Y;
pp = Point.ByCoordinates(p.X,tp,p.Z);
// Sine Wave
r = (0..360..10) * 4;
x = Math.DegreesToRadians(r);
y = -10..10..#9;
a = List.Flatten([1.5..0..#4,0,0..1.5..#4],-1);
z = Math.Sin(r +(0..90..#9)<1>) * a;
p = Point.ByCoordinates (x,y<1>,z<1>);

// Trough Protrusion
tp = p.Z<-1.4 ? p.Y+(-p.Y*(p.Z)*0.1) : p.Y;
pp = Point.ByCoordinates(p.X,tp,p.Z);

// Nurbs Surface
s = NurbsSurface.ByPoints(pp).Thicken(0.25);
Sagrida Familia Schools Roof
Step 1 : Sine Wave
Step 2 : Decrease the point count, increase the wave frequency and amplitude
Step 3 : Multiple similar waves along the Y-axis
Step 4 : Nurbs Surface
Step 5 : Crest (from trough) at start of last wave
Step 6 : Flattening amplitude towards the middle
Step 7 : Trough Protrusion
Step 8 : Thicken
Page cover image