Testing Waters
  • Scrapbook
  • Projects
    • Bamiyan Cultural Center
    • Bauhaus Museum
    • Better Hebbal
    • Bicycle Station
    • Cross Laminated Timber
    • Facade
    • Flowing Fabrication
    • Form from Images
    • Guggenheim Helsinki
    • National War Museum
    • National War Memorial
    • Indflorescence
    • Rectangular Compartments
    • Retail Space Layout
    • Noise Barrier : Swedevia Airport
    • Walden
    • Wilson Garden
  • Patterns
    • Area Graph
    • Array along Curve
    • Fibbonacci and Factorial
    • Gyroid
    • Hexagonal Pattern From Image
    • Hexagonal Grid
    • Koch Star
    • Mandelbrot Set
    • Pattern
    • Pattern
    • Pattern
    • Phyllotaxis
    • Random Strip Widths
    • Skewed Surface
    • Staggered Checkerboard
    • Triangle subdivision
    • Vector Field
    • Voronoi
    • Waves
    • Weave
  • Geometry
    • Boundary Curve
    • Bridging parallel curves
    • British Museum Great Court
    • Catenary
    • Delete Adjacent
    • Geodesic Sphere
    • Group Branching Curves
    • Group Circles
    • Group curves
    • K Mean
    • Nurbs Surface Irregular
    • Overlapping Petals
    • Pair Nearest
    • Parametric Shapes
    • Platonic Solids
    • Polyline to PolyArc
    • Roman Surface
    • Sagrada Familia Schools Roof
    • Sine Curve
    • Sine Ribbon
    • Spherical Transformations
    • Split Rectangle
    • Tangential Circle through Point
    • Travelling Salesman Problem
    • Unaligned Bounding Box
  • Lists
    • Alter by Boolean Sequence
    • Color by distance
    • Consecutive Points
    • Distancing
    • Divide Equally
    • Geometry from Image
    • Image based Point Density
    • Isovists
    • Reduce Color Palette
    • Replace Consecutive
    • Replace Multiple
    • Replace Recurring
    • Shadow Area
    • Shortest Path
    • Solar Analysis
    • Topography Analysis
  • Motion
    • Adjacency
    • Animate Sphere
    • Cellular Automation
    • Cloth
    • Hypotrochoid
    • Manakin
    • Rolling Spiral
    • Tan Curve
    • Trammel of Archemedes
    • Image to Integer
  • Articles
    • A Conceptual Approach to Integrating Computational Methods in Early Stage Design
    • Design Script's ambiguous and versatile Replication Guides <1>
    • Design Script's ambiguous and versatile Replication Guides <2>
Powered by GitBook
On this page
  1. Geometry

Parametric Shapes

Geometry defined by equations

PreviousPair NearestNextPlatonic Solids

Last updated 4 years ago

u = 180/2..3*180/2..2;
v = 0..180*2..2;
x = ((3/2) + Math.Sin(u + (2 * v)<1>)) * (Math.Cos(v) + Math.Cos(2 * v)/10);
y = ((3/2) + Math.Sin(u + (2 * v)<1>)) * (Math.Sin(v) + Math.Sin(2 * v)/10);
z = Math.Sin(Math.RadiansToDegrees(Math.Sin(Math.RadiansToDegrees(Math.Cos(u + (2 * v)<1>)<1> + (Math.Cos(12 * u) / 12)))));
s = GeometryColor.ByGeometryColor(NurbsSurface.ByPoints(Point.ByCoordinates(x,y,z)),Color.ByARGB(150,255,150,100));
geometry = [Imperative]
{
	a = 0;
	b = 0;
	arrPoints = [];
	for (v in 0..2*180..2)
	{
		for (u in (180/2)..(3*180/2)..2)
		{
			x = ((3/2) + Math.Sin(u+(2*v))) * (Math.Cos(v)+Math.Cos(2*v)/10);
			y = ((3/2) + Math.Sin(u+(2*v))) * (Math.Sin(v)+Math.Sin(2*v)/10);
			z = (Math.Sin(Math.RadiansToDegrees(Math.RadiansToDegrees(Math.Sin(Math.Cos(u+(2*v))+Math.Cos(12*u)/12)))));
			arrPoints [a][b] = Point.ByCoordinates(x, y, z);
			b = b + 1;
		}
		a = a + 1;
		b = 0;
	}
	return List.Clean(NurbsCurve.ByPoints(arrPoints),false);
//Circular Grid of Points
p1 = Point.ByCoordinates(Math.Cos(0..360),Math.Sin(0..360));
p2 = p1.Translate((p1.AsVector())<1>,(-1..10)<2>);

//Equation
a = 5;
b = 8;
z1 = Math.Pow(p2.X,2)/Math.Pow(a,2)-Math.Pow(p2.Y,2)/Math.Pow(b,2);

//Surface
s1 = NurbsSurface.ByPoints(p2.Translate(Vector.ZAxis(),z1));
GeometryColor.ByGeometryColor(s1,Color.ByARGB(255,252,211,3));
n = 10;
r = 20;
s = -n..n..#100;
t = 0..360..#100;
x = (r + (s<2> * Math.Cos(t/2)<1>)) * Math.Cos(t);
y = (r + (s<2> * Math.Cos(t/2)<1>)) * Math.Sin(t);
z = s<2> * Math.Sin(t/2)<1>;
points = Autodesk.Point.ByCoordinates(x,y,z);
Mobius = NurbsSurface.ByPoints(points)
//Parametric Hemisphere
r = 10;
b = 30;
c = 20;
u = 0..360..#b;
v = 0..r..#c;
x = Math.Sqrt(Math.Pow(r,2)<1>-Math.Pow(v<2>,2)<2>)*Math.Cos(u)<1>;
y = Math.Sqrt(Math.Pow(r,2)<1>-Math.Pow(v<2>,2)<2>)*Math.Sin(u)<1>;
z = v;
p = List.FirstItem(Autodesk.Point.ByCoordinates(x<1><2>,y<1><2>,z)<1>);

//Cross Bracing
dr = List.DiagonalRight(p,c);
pr = PolyCurve.ByPoints(List.FilterByBoolMask(dr,List.Count(dr<1>)>1)["in"],false);
dl = List.DiagonalLeft(p,c);
pl = PolyCurve.ByPoints(List.FilterByBoolMask(dl,List.Count(dl<1>)>1)["in"],false);
dh = List.UniqueItems(List.Transpose(p)<1>);
ph = PolyCurve.ByPoints(List.FilterByBoolMask(dh,List.Count(dh<1>)>1)["in"],false);
Associative and Imperative Shape definition
https://pixabay.com/images/id-331944/
Hyperbolic Paraboloid
Mobius Strip
Hemisphere