Testing Waters
  • Scrapbook
  • Projects
    • Bamiyan Cultural Center
    • Bauhaus Museum
    • Better Hebbal
    • Bicycle Station
    • Cross Laminated Timber
    • Facade
    • Flowing Fabrication
    • Form from Images
    • Guggenheim Helsinki
    • National War Museum
    • National War Memorial
    • Indflorescence
    • Rectangular Compartments
    • Retail Space Layout
    • Noise Barrier : Swedevia Airport
    • Walden
    • Wilson Garden
  • Patterns
    • Area Graph
    • Array along Curve
    • Fibbonacci and Factorial
    • Gyroid
    • Hexagonal Pattern From Image
    • Hexagonal Grid
    • Koch Star
    • Mandelbrot Set
    • Pattern
    • Pattern
    • Pattern
    • Phyllotaxis
    • Random Strip Widths
    • Skewed Surface
    • Staggered Checkerboard
    • Triangle subdivision
    • Vector Field
    • Voronoi
    • Waves
    • Weave
  • Geometry
    • Boundary Curve
    • Bridging parallel curves
    • British Museum Great Court
    • Catenary
    • Delete Adjacent
    • Geodesic Sphere
    • Group Branching Curves
    • Group Circles
    • Group curves
    • K Mean
    • Nurbs Surface Irregular
    • Overlapping Petals
    • Pair Nearest
    • Parametric Shapes
    • Platonic Solids
    • Polyline to PolyArc
    • Roman Surface
    • Sagrada Familia Schools Roof
    • Sine Curve
    • Sine Ribbon
    • Spherical Transformations
    • Split Rectangle
    • Tangential Circle through Point
    • Travelling Salesman Problem
    • Unaligned Bounding Box
  • Lists
    • Alter by Boolean Sequence
    • Color by distance
    • Consecutive Points
    • Distancing
    • Divide Equally
    • Geometry from Image
    • Image based Point Density
    • Isovists
    • Reduce Color Palette
    • Replace Consecutive
    • Replace Multiple
    • Replace Recurring
    • Shadow Area
    • Shortest Path
    • Solar Analysis
    • Topography Analysis
  • Motion
    • Adjacency
    • Animate Sphere
    • Cellular Automation
    • Cloth
    • Hypotrochoid
    • Manakin
    • Rolling Spiral
    • Tan Curve
    • Trammel of Archemedes
    • Image to Integer
  • Articles
    • A Conceptual Approach to Integrating Computational Methods in Early Stage Design
    • Design Script's ambiguous and versatile Replication Guides <1>
    • Design Script's ambiguous and versatile Replication Guides <2>
Powered by GitBook
On this page
  1. Motion

Trammel of Archemedes

PreviousTan CurveNextImage to Integer

Last updated 4 years ago

a = Math.Ceiling(Dictionary.ValueAtKey(DateTime.Components(d), "second")*0.58);

ps1 = 3;
xx1 = -5..5..#30;
yy1 = Math.Sqrt(ps1*ps1-Math.Pow(xx1,2));
sg1 = List.FilterByBoolMask(Math.Sign(xx1),yy1>0)["in"];
xx2 = Math.Round(List.FilterByBoolMask(xx1,yy1>0)["in"],6);
yy2 = Math.Round(List.FilterByBoolMask(yy1,yy1>0)["in"],6)*sg1;

pv1 = Point.ByCoordinates(xx2);
pv2 = Point.ByCoordinates(0,yy2);
ln1 = List.Flatten(Line.ByStartPointEndPoint(pv1,[pv2,List.Reverse(pv2)]<1>),-1);
an1 = ln1.ExtendEnd(3).EndPoint.AsVector().AngleAboutAxis(Vector.XAxis(),Vector.ZAxis());
ln2 = List.SortByKey(ln1,an1)["sortedList"];
ln3 = List.GetItemAtIndex(ln2,a);

//Solids
cl1 = Circle.ByCenterPointRadius(ln3.StartPoint,0.07).ExtrudeAsSolid(Vector.ZAxis(),0.125);
cl2 = Circle.ByCenterPointRadius(ln3.EndPoint,0.07).ExtrudeAsSolid(Vector.ZAxis(),0.125);
cl3 = Circle.ByCenterPointRadius(ln3.ExtendEnd(4.15).EndPoint,0.1).ExtrudeAsSolid(Vector.ZAxis(),0.15);
ln4 = PolyCurve.ByThickeningCurveNormal(ln3.ExtendEnd(4.5).ExtendStart(0.15),0.5,Vector.ZAxis()).ExtrudeAsSolid(Vector.ZAxis(),0.05);
rt1 = Rectangle.ByWidthLength(0.75,0.5).Translate(Vector.XAxis(),ln3.StartPoint.X).ExtrudeAsSolid(Vector.ZAxis(),-0.2);
rt2 = Rectangle.ByWidthLength(0.5,0.75).Translate(Vector.YAxis(),ln3.EndPoint.Y).ExtrudeAsSolid(Vector.ZAxis(),-0.2);
rt3 = Rectangle.ByWidthLength(3,3).Translate([1.75,1.75,-1.75,-1.75],[1.75,-1.75,-1.75,1.75],-0.1).ExtrudeAsSolid(Vector.ZAxis(),-0.1);
rt4 = Solid.ByUnion(List.Flatten([rt3,Rectangle.ByWidthLength(6.5,6.5).Translate(0,0,-0.2).ExtrudeAsSolid(Vector.ZAxis(),-0.3)],-1));

//Color
cr1 = GeometryColor.ByGeometryColor(ln4,Color.ByARGB(255,204,102,0));
cr2 = GeometryColor.ByGeometryColor([rt1,rt2],Color.ByARGB(255,255,255,0));
cr3 = GeometryColor.ByGeometryColor(rt4,Color.ByARGB(255,255,255,200));
cr4 = GeometryColor.ByGeometryColor([cl1,cl2,cl3],Color.ByARGB(255,0,255,200));
3KB
archemedesTrammel.zip
archive
Trammel of Archemedes